Availability: In Stock

Theory of Stochastic Processes: With Applications to Financial Mathematics and Risk Theory (Problem Books in Mathematics)

SKU: 9780387878614

Original price was: $48.00.Current price is: $16.00.

Theory of Stochastic Processes: With Applications to Financial Mathematics and Risk Theory (Problem Books in Mathematics), J. David Cummins, 9780387878614

Description

ershouldbeacquainted withprobabilitytheory,calculus,andmeasuretheorywithinthescopeofresp- tiveuniversity courses. Standard notions, suchas random variable, measurability, independence, Lebesgue measure and integral, and so on are used without ad- tionaldiscussion. Allthenewnotionsandstatementsrequiredforsolvingthepr- lemsaregiveneitherontheoreticalgroundsorintheformulationsoftheproblems vii viii Preface straightforwardly. However,sometimesanotionisusedinthetextbeforeitsformal de nition. Forinstance,theWienerandPoissonprocessesareprocesseswithin- pendentincrementsandthusareformallyintroducedinaTheoreticalgroundsfor Chapter5,buttheseprocessesareusedwidelyintheproblemsofChapters2to4. Theauthorsrecommendthatareaderwhocomestoanunknownnotionorobject usetheIndexinorderto ndthecorrespondingformalde nition. Thesamerec- mendationconcernssomestandardabbreviationsandsymbolslistedattheendofthe book. Someproblemsinthebookformcycles:solutionstooneofthemaregrounded onstatementsofothersoronauxiliaryconstructionsdescribedinsomepreceding solutions. Sometimes,onthecontrary,itisproposedtoprovethesamestatement withindifferentproblemsusingessentiallydifferenttechniques. Theauthorsrec- mendareaderpayspeci cattentiontothesefruitfulinternallinksbetweenvarious topicsofthetheoryofstochasticprocesses. Everypartofthebookwascomposedsubstantiallybyoneauthor. Chapters1-6, and16arecomposedbyA. Kulik,Chapters7,12-15,18,and19byYu. Mishura, Chapters 8-10 by A. Pilipenko, Chapter 17 by A. Kukush, and Chapter 20 by D. Gusak. Chapter11waspreparedjointlybyD. GusakandA. Pilipenko. Atthe sametime,everyauthorhasmadeacontributiontootherpartsofthebookbyprop- ingseparateproblemsorcyclesofproblems,improvingpreliminaryversionsoft- oreticalgrounds,andeditingthe naltext. The authors would like to express their deep gratitude to M. Portenko and A. Ivanovfortheircarefulreadingofapreliminaryversionofthebookandva- ablecommentsthatledtosigni cantimprovementofthetext. Theauthorsarealso gratefultoT. Yakovenko,G. Shevchenko,O. Soloveyko, Yu. Kartashov, Yu. K- menko,A. Malenko,andN. Ryabovafortheirassistanceintranslation,preparing lesandpictures,andcomposingthesubjectindexandreferences. Thetheoryofstochasticprocessesisanextendeddiscipline,andtheauthors- derstandthattheproblembookinitscurrentformmaycausecriticalremarksfrom readers,concerningeitherthestructureofthebookorthecontentofseparatech- ters. Whilepublishingtheproblembookinitscurrentform,theauthorsareopenfor remarks,comments,andpropositions,andexpressinadvancetheirgratitudetoall theircorrespondents. Kyiv DmytroGusak December2008 AlexanderKukush AlexeyKulik YuliyaMishura AndreyPilipenko Contents 1 De?nition of stochastic process. Cylinder?-algebra, ?nite-dimensional distributions, the Kolmogorov theorem. . . . . . . . . . 1 Theoreticalgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 AnswersandSolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Characteristics of a stochastic process. Mean and covariance functions. Characteristic functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Theoreticalgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 AnswersandSolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Trajectories. Modi?cations. Filtrations. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Theoreticalgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 AnswersandSolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Continuity. Differentiability. Integrability. . . . . . . . . . . . . . . . . . . . . . . . . 33 Theoreticalgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 AnswersandSolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ix x Contents 5 Stochastic processes with independent increments. Wiener and Poisson processes. Poisson point measures. . . . . . . . . . . . . . . . . . . . .

Additional information

Publisher

ISBN

Date of Publishing

Author

Category

Page Number